ISSN 1991-3087

Свидетельство о регистрации СМИ: ПИ № ФС77-24978 от 05.07.2006 г.

ISSN 1991-3087

Подписной индекс №42457

Периодичность - 1 раз в месяц.

Вид обложки

Адрес редакции: 305008, г.Курск, Бурцевский проезд, д.7.

Тел.: 8-910-740-44-28

E-mail: jurnal@jurnal.org

Рейтинг@Mail.ru Rambler's Top100
Яндекс.Метрика

Признаки делимости чисел с окончаниями 1, 3, 7, 9

 

Громова Людмила Фёдоровна.

 

Введение

 

Данная работа предлагает несколько универсальных признаков делимости чисел с 1, 3, 7, 9 на конце.

Например, чтобы определить, делится ли число на 73, нужно разбить это число на группы по 4 цифры и поочерёдно их складывать и вычитать.

Если результат делится на 73, то и число делится на 73.

Так, 2173467897997367 делится на 73, т. к.

2173 – 4678 + 9799 – 7367 = – 73 делится на 73. 

В этой статье показано, как подобным способом определить делимость любого нечетного числа, не оканчивающегося на 5.

Это один из семи новых универсальных правил определения делимости, которые представлены в данной статье.

 

Глава I. Коэффициент делимости D. Определение делимости по коэффициенту D.

 

Для решения поставленной перед нами задачи введём понятия коэффициента делимости. Каждое число с окончанием 1, 3, 7, 9 имеет по два коэффициента делимости.

D - первичный коэффициент делимости

D’ - вторичный коэффициент делимости

Запишем число B как (10b + 1), (10b + 3), (10b + 7), (10b + 9), где b количество десятков.

 

Формулы коэффициентов делимости D и D’:

Число B

Первичный коэффициент

делимости D

Вторичный коэффициент делимости D

(10b + 1)

(–b)

(9b + 1)

(10b + 3)

(3b + 1)

(–7b –2)

(10b + 7)

(–3b –2)

(7b + 5)

(10b + 9)

(b + 1)

(– 9b –8)

 

D’ = D B, если D имеет положительное значение

D’ = D + B, если D имеет отрицательное значение

При этом D’ и D всегда имеют противоположные знаки, а сумма их абсолютных величин равна абсолютной величине B:

| D| + | D’| = |B|

Коэффициенты D и D’ одного и того же числа взаимозаменяемы при проведении тестов на делимость, которые рассматриваются в нашей статье.

 

Примеры коэффициентов делимости D и D':

 Число

(10b + 1)

 D

(–b)

D'

(9b + 1)

 Число

(10b + 3)

D

(3b + 1)

D'

(–7b –2)

1

0

1

3

1

-2

11

-1

10

13

4

-9

21

-2

19

23

7

-16

31

-3

28

33

10

-23

41

-4

37

43

13

-30

Число

(10b + 7)

 D

(–3b –2)

D'

(7b + 5)

Число

(10b + 9)

D

(b + 1)

D'

(– 9b –8)

7

-2

5

9

1

-8

17

-5

12

19

2

-17

27

-8

19

29

3

-26

37

-11

26

39

4

-35

47

-14

33

49

5

-44

 

Используя понятия коэффициентов D и D’, сформулируем первое универсальное правило определения делимости:

 

Правило № 1:

Число А делится на B, если А без последней цифры плюс последняя цифра, умноженная на D или D’, делится на B.

 

Например:

1. Делится ли число 738 на 41?

41 = (10b + 1)

D = (– b) = –4

D’ = (9b + 1) = 37

73 + 8D = 73 + 8(– 4) = 73 – 32 = 41    

4141 = 1

73 + 8D’ = 73 + 837 = 73 + 296 = 369              

36941 = 9

Да, делится.

2. Делится ли 354 на 59?

59 = (10b + 9)

D = (b + 1) = 6

D’ = (– 9b –8) = 53

35 + 4D = 35 + 46 = 35 + 24 = 59

5959 = 1

35 + 4D’ = 35 + 4 (53) = 35 – 212 = 177

17759 = 3

Да, делится.

3. Делится ли 428 на 17?

17 = (10b + 7)

D = (–3b –2) = –5

D’ = (7b + 5) = 12

42 + 8D = 42 + 8(–5) = 42 – 40 = 2 (2 на 17 без остатка не делится)

42 + 8D’ = 42 + 812 = 42 + 96 = 138 (138 на 17 без остатка не делится)

Нет, не делится.

 

Глава II. Определение делимости по периоду коэффициентов делимости

 

Используя коэффициенты делимости D, находим ряд остатков по схеме:

D1 = остаток от деления D1 на число B

D2 = остаток от деления D² на B

D3 = остаток от деления D³ на B

DP = остаток от деления Dр на B

Ряд остатков конечен и циклически повторяется. Это период коэффициентов делимости. Обозначим его {D1, D2, ... DР}.

Длину периода (количество остатков) обозначим P.

Поскольку каждое число вида (10b + 1), (10b + 3), (10b + 7), (10b + 9) имеет два коэффициента делимости, D и D’, то и периодов коэффициентов у него тоже два.

D’n = Dn B, если Dn имеет положительное значение

D’n = Dn + B, если Dn имеет отрицательное значение

Например:

1. Число 77 = (10b + 7)

D = (–3b –2) = –23

 

Первый период коэффициентов:

D1 = остаток от деления (–23)177 = –23

D2 = остаток от деления (–23)²77 = 67

D3 = остаток от деления (–23)³77 = –1

D4 = остаток от деления (–23)477 = 23

D5 = остаток от деления (–23)577 = – 67

D6 = остаток от деления (–23)677 = 1

Начиная с седьмого остатка цикл повторяется, значит, для числа 77 P = 6.

 

Второй период коэффициентов:

D1 = D1 + B = –23 + 77 = 54

D’2 = D2 B = 67 77 = – 10

D’3 = D3 + B = – 1 +77 = 76

D’4 = D4 B = 23 – 77 = 54

D’5 = D5 + B = –67 + 77 = 10

D’6 = D6 B = 1 – 77 = –76

Итак:

{D1, D2 , ... DР}: –23 + 67 –1 + 23 –67 + 1

{D1, D2 , ... DР}: 54 10 + 76 54 + 1076

P = 6

Соответствующие цифры в обоих периодах во всех наших тестах взаимозаменяемы. Из двух периодов без ущерба для нашей задачи можно составить любые комбинации, заменяя числа в паре (D1 и D1, D2 и D2, Dn и Dn), не меняя последовательности членов периодов.

Например:

54 + 67 + 76 + 23 + 10 + 1 (только положительные числа)

–23 10 –1 54 –67 76 (только отрицательные числа)

–23 10 –1 + 23 + 10 + 1 (наименьшие по абсолютной величине числа)

И т. д.

 

Следующее универсальное правило определения делимости формулируется с использованием понятия периода коэффициентов:

 

Правило №2:

Число А делится на B, если число А без n последних цифр плюс n последних цифр, умноженных на Dn или D’n, делится на B.

 

Например:

Делится ли 196096204 на 31?

Для числа (10b + 1) = 31:

D = (b) = ( 3)

{D1, D2 , ... DР}: 3 +9 27 +19 26 +16 17 +20 29 +25 13 +8 24 +10 30

{D1, D2 , ... DР}: 28 22 +4 12 +5 15 +14 11 +2 6 +18 23 +7 21 +1

P = 15

Применим Правило №2:

1) [19609620 + 4D1]31 = [19609620 + 4(–3)]31 = 632568

 [19609620 + 4D1]31 = [19609620 + 428]31 = 632572                          

2) [1960962 + 4D2]31 = [1960962 + 49]31 = 63258

 [1960962 + 4D2]31 = [1960962 + 4(-22)]31 = 63254                              

3) [196096 + 204D3]31 = [196096 + 204(–27)]31 = 6148

 [196096 + 204D3]31 = [196096 + 2044]31 = 6352                                

4) [19609 + 6204D4] : 31 = [19609 + 620419]31 = 4435

 [19609 + 6204D4]31 = [19609 + 6204(-12)]31 = –1769

5) [1960 + 96204D5]31 = [1960 + 96204(–26)]31 = 80624

 [1960 + 96204D5]31 = [1960 + 962045] : 31 = 15580

6) [196 + 96204D6]31 = [196 + 9620416]31 = 49660

 [196 + 96204D6]31 = [196 + 96204(-15)]31 = 46544

7) [19 + 6096204D7]31 = [19 + 6096204(–17)]31 = 3343079

 [19 + 6096204D7]31 = [19 + 609620414]31 = 85346875

8) [1+ 96096204D8]31 = [1+ 9609620420]31 = 61997551

 [1+ 96096204D8]31 = [1+ 96096204(-11)]31 = 34098653

Все 16 тестов показывают: да, делится.

 

Правило №3

Число A делится на B, если число А без n последних цифр плюс n последних цифр, умноженных на Dn , делится на B.

 

Например:

1. Делится ли 90369828241 на 7

7 = (10b + 7)

D = (–3b –2) = –2

Если n = 5, то

903698 + 28241(–2)5 = 903698 – 2824132 = –14

–147 = –2

Да, делится.

2. Делится ли 11975009 на 37?

37 = (10b + 7)

D = (–3b –2) = –11

Если n = 3, то

11975 + 009  (–11)3 = 11975 – 9  1331 = –4

Нет, не делится.

 

В Приложении приведены периоды {D1, D2 , ... DР} и {D1, D2 , ... DР} для чисел от 3 до 99.

 

Глава III. Определение делимости по длине периода коэффициентов P

 

Если число имеет окончание 1, 3, 7 или 9, то при делении 1 на это число получается периодическая десятичная дробь.

Чтобы найти P числа, не высчитывая весь цикл {D1, D2 , ... DР}, нужно разделить единицу на это число. Количество циклически повторяющихся цифр в получившейся десятичной дроби равно P числа.

Например:

1. Для числа 4649 P = 7, т. к.:

14649 = 0, 0002151 0002151 …

2. Для числа 265371653 P = 13, т. к.:

1265371653 = 0, 0000000037683 0000000037683 …

3. Для числа 231 P = 6, т. к.:

1231 = 0, 004329 004329 …

 

В Приложении даны P для чисел с окончанием 1, 3, 7, 9.

 

Правило №4 :

Чтобы определить, делится ли число A на число B, нужно разбить делимое А на части по P цифр в каждой, получившиеся числа сложить. Если результат делится на В, то и число А делится на В.

В первой слева части количество цифр может быть меньше или равно P. Если в последней части цифр меньше, чем P, то дописать в конце столько нулей, чтобы было P цифр.

 

Например:

Делится ли число 6059315457162 на 111?

Для числа 111 Р = 3, следовательно, разбиваем делимое в группы по 3:

1) 605 + 931+ 545 + 716 + 200 = 2997

2 + 997 = 999

999111 = 9

Или:

2) 6 + 059 + 315 + 457 + 162 = 999

999111 = 9

Или:

3) 60 + 593 + 154 + 571 + 620 = 1998        

1 + 998 = 999

999111 = 9

Да, делится.

 

Правило №5 :

Если простое число В имеет чётное P, то нужно разбить делимое А на части по половине P цифр в каждой, получившиеся числа последовательно по очереди складывать и вычитать. Если результат делится на В, то и число А делится на В.

В первой слева части количество цифр может быть меньше или равно половине P. Если в последней части цифр меньше, чем половина P, то дописать в конце столько нулей, чтобы было половина P цифр.

 

Например:

1. Делится ли число 69964106514 на 73?

73 – простое число

Р = 8    

699 – 6410 + 6514 = 803

803  73 = 11

Да, делится.

2. Делится ли число 1300151524644518 на 101?

101 - простое число

Р = 4

13 – 00 + 15 – 15 + 24 – 64 + 45 – 18 = 0

Да, делится.

3. Делится ли число 2618 на 11?

11 - простое число

Р = 2

Таким образом, если поочерёдное сложение и вычитание цифр даёт результат, который делится на 11, то и всё число делится на 11.

2 –6 + 1 –8 = –11

–11  11 = –1

Да, делится.

Это известный частный случай применения данного правила.

 

Правило №5 применимо ко всем простым числам и к некоторым составным.

 

Глава IV. Определение делимости по полному периоду коэффициентов делимости.

 

Правило №6:

Цифры делимого А (начиная с первой слева) последовательно умножить на цифры периода D1... DP делителя В (начиная с любой слева направо, цифры циклически повторять, сколько необходимо), а результаты сложить. Если сумма делится на В, то А делится на В.

 

Например: делится ли 437617206 на 39?

39 = (10b + 9)

D = (b + 1) = 4

{D1, D2 , ... DР}: 4 16 25 22 10 1

1. Умножим последовательно цифры числа 4 3 7 6 1 7 2 0 6 на цифры цикла

4 16 25 22 10 1:                                             

   4      3      7      6      1    7    2      0      6

4 16 25 22 10 1 4 16 25

 16    48  175  132    10    7    8      0  150

Результаты сложим:

16 + 48 + 175 + 132 + 10 + 7 + 8 + 0 + 150 = 546

2. Умножим последовательно цифры получившегося числа 5 4 6 на цифры цикла 4 16 25 22 10 1 (начиная с любой, например, с пятой):

     5    4    6

10 1 4

   50    4  24

Результаты сложим:

50 + 4 + 24 = 78

3. Умножим последовательно цифры получившегося числа 7 8 на цифры цикла 4 16 25 22 10 1 (начиная с любой, например, с шестой):

7        8

 1 4

    7  32

Результаты сложим:

7 + 32 = 39

39  39 = 1

Да, делится.

 

Правило №7:

Чтобы определить, делится ли число A на число B, нужно разбить делимое А на части с произвольным количеством n цифр в каждой. В первой слева части цифр может быть меньше или равно n. Если в последней части цифр меньше, чем n, то дописать в конце столько нулей, чтобы было n цифр.

Получившиеся числа из n цифр, начиная с первой слева, последовательно умножить на каждую n-ную по счёту цифру периода {D1, D2, ...DP}, начиная с любой. Результаты сложить. Если сумма делится на В, то А делится на В.

 

Например: делится ли 26560068364660420190268 на 17?

17 = (10b + 7)

D = (–3b –2) = –5

Р = 16

{D1, D2 ... DP}: -5+8-6+13-14+2-10+16+5-8+6-13+14-2+10-16

{D1, D2 ... DР}: 12-9+11-4+3-15+7-1-12+9-11+4-3+15-7+1

Поскольку соответствующие цифры в обоих периодах взаимозаменяемы, составим период из наименьших по абсолютной величине чисел:

-5+8-6-4+3+2-10-1+5-8+6+4-3-2+10+1

1. Разбиваем число 26560068364660420190268, например, по 7 цифр:

196 5600683 6466042 0190115

Умножаем последовательно каждую группу из семи цифр на каждый седьмой член периода (начиная с любого, например, со второго)

-5+8-6-4+3+2-10-1+5-8+6+4-3-2+10+1-5+8-6-4+3+2-10:

  196      5600683        6466042          0190115

   8                    5               1                 -10

1568    28003415        6466042          -1901150

Результаты сложим:

1568 + 28003415 + 6466042 – 1901150 = 32569875

2. Разбиваем получившееся число 32569875, например, по 4 цифры:

3256 9875

Умножаем последовательно каждую группу из четырёх чисел на каждый четвёртый член периода (начиная с любого, например, с первого)

-5+8-6-4+3+2-10-1+5-8+6+4-3-2+10+1:

 

    3256             9875

     –5                 3

–16280            29625

Результаты сложим:

29625 – 16280 = 13345

3. Разбиваем получившееся число 13345, например, по 3 цифры (допишем 0 в последней группе):

133 450

Умножаем последовательно каждую группу из трёх чисел на каждый третий член периода (начиная с любого, например, с пятого)

-5+8-6-4+3+2-10-1+5-8+6+4-3-2+10+1:

 133                    450

  3                   –1

 399                 – 450

Результаты сложим:

399 – 450 = –51

 

4. Разбиваем получившееся число –51 по 1 цифре:

Умножаем последовательно каждую группу из одного числа на каждый первый член периода (начиная с любой, например, с пятой)

-5+8-6-4+3 +2-10-1+5-8+6+4-3-2+10+1:

   –5                  –1     

  3                  2

 –15                  –2

Результаты сложим:

–15 – 2 = –17

–1717 = –1

Да, делится.

 

Заключение

 

Итак, мы рассмотрели несколько универсальных правил определения делимости чисел. Стоит отметить, что частные случаи приведённых правил использовались ранее для определения делимости некоторых чисел. В статье же представлены универсальные системы и формулы, которые позволяют применить эти правила для всех чисел, оканчивающихся на 1, 3, 7, 9.

Можно предположить, что дальнейшее изучение периодов чисел может дать новые возможности в изучении свойств чисел.

Так, в конце Главы III упоминалось, что Правило №5 применимо ко всем простым числам. Составные числа не все подчиняются этому правилу.

Например:

Числа 91 и 21 составные и имеют одинаковое значение Р = 6.

Делимость на число 91 можно определить, применив

1. Правило №4 (Сложить части числа А по P цифр в каждой. Если результат делится на В, то и А делится на В).

Например:

Число 2639002457 делится на 91, т. к.

2639 + 002457 = 5096 делится на 91 (509691 = 56)

2. Правило №5 (Поочерёдно складываем и вычитаем части числа А по половине P цифр в каждой. Если результат делится на В, то и А делится на В).

Например:

Число 2639002457 делится на 91, т. к.

2 – 639 + 002 – 457 = – 1092

– 109 + 200 = 91 делится на 91 (9191 = 1)

Делимость на число 21 определяются с применением:

1. Правила №4 (Сложить части числа А по P цифр в каждой. Если результат делится на В, то и А делится на В).

Например:

Число 12902148 делится на 21, т. к.

129 + 021480 = 21609 делится на 21 (2160921 = 1029)

2. Не определяются Правилом №5. (Последовательное сложение и вычитание по 3 цифры):

Например:

Число 79086 делится на 21 (79086 : 21 = 3766), но

79 – 086 = 7 (на 21 не делится)

Исследования причин неоднородности свойств чётных Р составных чисел, а также другие свойства периодов коэффициентов будут приведены в следующей статье.

 

Приложение. Периоды коэффициентов делимости

           

Условные обозначения:

P – длина периода   

- (-"-) – повторяется содержание предыдущей скобки с противоположным знаком. (Делимость этих чисел может определяться с помощью складывания и вычитания по половине P цифр).

{D1, D2,... DР} - полный период первичных коэффициентов делимости

{D’1, D’2,... D’Р} - полный период вторичных коэффициентов делимости

 

Число

{D1, D2,... DР}

P

{D’1, D’2,... D’Р}

11

 (-1) - (-"-)

2

 (10) - (-"-)

21

 -2+4-8+16-11+1

6

19-17+13-5+10-20

31

 -3+9-27+19-26+16-17+20-29+25-13+8-24+10-30

15

28-22+4-12+5-15+14-11+2-6+18-23+7-21+1

41

 -4+16-23+10-40

5

 37-25+18-31+1

51

 -5+25-23+13-14+19-44+16-29+43-11+4-20+49-41+1

16

 46-26+28-38+37-32+7-35+22-8+40-47+31-2+10-50

61

( -6+36-33+15-29+52-7+42-8+48-44+20-59+49-50+56-31+

+3-18+47-38+45-26+34-21+4-24+22-10+60) - ( -"-)

60

 (55-25+28-46+32-9+54-19+53-13+17-41+2-12+11-5+30-

 -58+43-14+23-16+35-27+40-57+37-39+51-1) - ( -"-)

71

 -7+49-59+58-51+2-14+27-47+45-31+4-28+54-23+19-62+8-

 -56+37-46+38-53+16-41+3-21+5-35+32-11+6-42+10-70

35

64-22+12-13+20-69+57-44+24-26+40-67+43-17+48-52+9-63

+15-34+25-33+18-55+30-68+50-66+36-39+60-65+29-61+1

81

 -8+64-26+46-44+28-62+10-80

9

 73-17+55-35+37-53+19-71+1

91

( -9+81-1)-(-"-)

 6

 (82-10+90) (-"-)

3

1

1

-2

13

(4+3+12) - (-"-)

6

(-9-10-1) - (-"-)

23

(7+3+21+9+17+4+5+12+15+13+22) - (-"-)

22

(-16-20-2-14-6-19-18-11-8-10-1) - (-"-)

33

10+1

 -23-32

43

13+40+4+9+31+16+36+38+21+15+23+41+17+6+35+25+

 +24+11+14+10+1

21

 -30-3-39-34-12-27-7-5-22-28-20-2-26-37-8-18-19-32-

 -29-33-42

53

16+44+15+28+24+13+49+42+36+46+47+10+1

13

 -37-9-38-25-29-40-4-42-17-7-6-43-52

63

19+46+55+37+10+1

6

 -44-17-8-26-53-62

73

(22+46+63+72) - (-"-)

 8

(-51-27-10-1) - (-"-)

83

25+44+21+27+11+26+69+65+48+38+37+12+51+30+3+75+

 +49+63+81+33+78+41+29+61+31+28+36+70+7+9+59+

+64+23+77+16+68+40+4+17+10+1

41

 -58-39-62-56-72-57-14-18-35-45-46-71-32-53-80-8-34-20-2-

 -50-5-42-54-22-52-55-47-13-76-74-24-19-60-6-67-15-43-79-

-66-73-82

93

28+40+4+19+67+16+76+82+64+25+49+70+7+10+1

15

 -65-53-89-74-26-77-17-11-29-68-44-23-86-83-92

7

(-2+4-1) - (-"-)

 6

(5-3+6) - (-"-)

17

(-5+8-6+13-14+2-10+16) - (-"-)

16

(12-9+11-4+3-15+7-1) - (-"-)

27

 -8+10-26

3

 

19-17+1

37

 -11+10-36

3

26-27+1

47

(-14+8-18+17-3+42-24+7-4+9-32+25-21+12-27+2-28+16-

 -36+34-6+37-1)-(-"-)

46

(33-39+29-30+44-5+23-40+43-38+15-22+26-35+20-45+19-

 -31+11-13+41-10+46)-(-"-)

57

 -17+4-11+16-44+7-5+28-20+55-23+49-35+25-26+43-47+1

18

40-53+46-41+13-50+52-29+37-2+34-8+22-32+31-14+10-56

67

 -20+65-27+4-13+59-41+16-52+35-30+64-7+6-53+55-28+

 +24-11+19-45+29-44+9-46+49-42+36-50+62-34+10-66

33

47-2+40-63+54-8+26-51+15-32+37-3+60-61+14-12+39-43+

 +56-48+22-38+23-58+21-18+25-31+17-5+33-57+1

77

(-23+67-1) - (-"-)

 6

(54-10+76) - (-"-)

87

 -26+67-2+52-47+4-17+7-8+34-14+16-68+28-32+49-56+64-

 -11+25-41+22-50+82-44+13-77+1

28

61-20+85-35+40-83+70-80+79-53+73-71+19-59+55-38+

 +31-23+76-62+46-65+37-5+43-74+10-86

97

(-29+65-42+54-14+18-37+6-77+2-58+33-84+11-28+36-74+

 +12-57+4-19+66-71+22-56+72-51+24-17+8-38+35-45+44-

-15+47-5+48-34+16-76+70-90+88-30+94-10+96) - (-"-)

96

(68-32+55-43+83-79+60-91+20-95+39-64+13-86+69-61+

 +23-85+40-93+78-31+26-75+41-25+46-73+80-89+59-62+

+52-53+82-50+92-49+63-81+21-27+7-9+67-3+87-1) - (-"-)

9

1

1

-8

19

(2+4+8+16+13+7+14+9+18) - (-"-)

18

(-17-15-11-3-6-12-5-10-1) - (-"-)

29

(3+9+27+23+11+4+12+7+21+5+15+16+19+28) - (-"-)

28

(-26-20-2-6-18-25-17-22-8-24-14-13-10-1) - (-"-)

39

4+16+25+22+10+1

6

 -35-23-14-17-29-38

49

(5+25+27+37+38+43+19+46+34+23+17+36+33+18+41+

 +9+45+29+47+39+48) - ( -"- )

42

(-44-24-22-12-11-6-30-3-15-26-32-13-16-31-8-

 -40-4-20-2-10-1) - (-"-)

59

(6+36+39+57+47+46+40+4+24+26+38+51+11+7+42+16+

 +37+45+34+27+44+28+50+5+30+3+18+49+58) - (-"-)

58

(-53-23-20-2-12-13-19-55-35-33-21-8-48-52-17-43-22-14-

 -25-32-15-31-9-54-29-56-41-10-1) - (-"-)

69

 7+49+67+55+40+4+28+58+61+13+22+16+43+25+37+

 +52+19+64+34+31+10+1

22

 -62-20-2-14-29-65-41-11-8-56-47-53-26-44-32-17-50-5-

 -35-38-59-68

79

8+64+38+67+62+22+18+65+46+52+21+10+1

13

 -71-15-41-12-17-57-61-14-33-27-58-69-78

89

(9+81+17+64+42+22+20+2+18+73+34+39+84+44+40+4+

 +36+57+68+78+79+88) - (-"-)

44

(-80-8-72-25-47-67-69-87-71-16-55-50-5-45-49-85-53-32-

 -21-11-10-1) - (-"-)

99

10+1

2

 -89-98

 

Литература

 

1.                  Divisibility Rules and Tests. http://www.mathwarehouse.com/arithmetic/numbers/divisibility-rules-and-tests.php.

2.                  Н. Н. Воробьёв, Признаки делимости, «Популярные лекции по математике», Выпуск 38, М., «Наука» 1988 г, 94 стр.

 

Поступила в редакцию 25.11.2009 г.

2006-2018 © Журнал научных публикаций аспирантов и докторантов.
Все материалы, размещенные на данном сайте, охраняются авторским правом. При использовании материалов сайта активная ссылка на первоисточник обязательна.