ISSN 1991-3087

Свидетельство о регистрации СМИ: ПИ № ФС77-24978 от 05.07.2006 г.

ISSN 1991-3087

Подписной индекс №42457

Периодичность - 1 раз в месяц.

Вид обложки

Адрес редакции: 305008, г.Курск, Бурцевский проезд, д.7.

Тел.: 8-910-740-44-28

E-mail: jurnal@jurnal.org

Рейтинг@Mail.ru Rambler's Top100
Яндекс.Метрика

Нелинейные колебания токонесущей ортотропной оболочки в переменном магнитном поле

 

Индиаминов Равшан Шукурович,

кандидат физико-математических наук, доцент,

Дониёров Абдирашид Абдирасулович,

магистрант.

Самаркандский филиал Ташкентского университета информационных технологий.

 

В работе построена нелинейная двумерная модель магнитоупругости токонесущей оболочки с учетом конечной ортотропной электропроводностью, магнитной и диэлектрической проницаемости. Проводится анализ электромагнитных эффектов и напряженно–деформированное состояние токонесущей ортотропной оболочки с учетом ортотропной электропроводности.

Ключевые слова: оболочка, магнитное поле, магнитоупругость.

 

A two-dimensional variant of connected nonlinear equations of electrodynamics of the current - carrying orthotropic rotation shells, under no stationary loads in presented. A procedure for solution of asymmetrical problems of magneto elasticity of flexible current-carrying orthotropic rotation shells under no stationary actions of mechanical and electromagnetic forces is plotted. A stress-strained state of flexible current-carrying orthotropic rotation shells in geometrically nonlinear statement.

Печать каталогов в Москве

Печать каталогов! Низкие цены! Закажи сейчас

navprint.ru

Косметология дешево

Аппараты для косметологии. Низкие цены. Купить

косметология-дисконт.рф

Keywords: shell, magnetic field, magneto elasticity.

 

Развитие теории сопряженных полей и, в частности, теории электромагнитного взаимодействия с деформируемой средой считается одним из главных направлений развития современной механики твердого тела. Механизм взаимодействия упругой среды с электромагнитным полем разнообразен и обусловлен геометрическими характеристиками и физическими свойствами рассматриваемого тела. В частности, этот механизм получает некоторые специфические особенности, когда рассматриваем проблемы относительно тонких пластин и оболочек, обладающих анизотропной электропроводностью.

В большинстве работ взаимодействие упругого тела с электромагнитным полем рассматривается без учета анизотропной электропроводностью, магнитной и диэлектрической проницаемости. Когда материал проводящего упругого тела обладает свойством анизотропной электропроводностью, магнитной и диэлектрической проницаемости, то картина взаимодействия полей значительно усложняется и поэтому создания упрощенной, нелинейной теории магнитоупругого взаимодействия с учетом анизотропной электропроводностью, магнитной и диэлектрической проницаемости представляет научный интерес, как сточки зрения теории, так и приложений.

Задачи электромагнитоупругости анизотропных пластин и оболочек обладающей анизотропной электропроводностью представляет научный интерес. Дело в том, что в случае тонких анизотропных или изотропных тел с анизотропной электропроводностью можно ставить и решать оптимальные задачи магнитоупругости путем вариации всех физико-механических параметров материала тела. В частности, при постоянных механических и геометрических параметрах задачи, с помощью изменения анизотропных электродинамических параметров можно получить конструктивные элементы с качественно новым механическим поведением. Отметим, что в последнее время созданы материалы и наноматериалы с новыми электромагнитными свойствами. Эти материалы могут эффективно использоваться в различных областях новой техники при разработке новых технологий.

 

Нелинейная постановка задачи.

Будем рассматривать гибкие токонесущие конические оболочки переменной вдоль меридиана толщины, находящихся под действием нестационарных электромагнитных и механических полей. Пренебрегая влиянием процессов поляризации и намагничивания, а также температурными напряжениями считаем, что к торцу оболочку подводится переменный электрический ток от внешнего источника. Предполагается, что сторонний электрический ток в невозмущенном состоянии равномерно распределен по телу (плотность тока не зависит от координат). Упругие свойства материала оболочки считаются ортотропными, главные направления, упругости которого совпадают с направлениями соответствующих координатных линий, электромагнитные же свойства материала характеризуются тензорами электрической проводимости , магнитной проницаемости , диэлектрической проницаемости . При этом, исходя из кристаллофизики, для рассматриваемого класса проводящих ортотропных сред с ромбической кристаллической структурой считаем, что тензоры ,  и  принимают диагональный вид. В этом случае произвольная поверхность второго порядка обладает тремя взаимно перпендикулярными осями второго порядка и можно расположить эти оси параллельно кристаллографическим осям второго порядка, а также характеристическая поверхность второго порядка обладает всеми элементами симметрии, которые могут быть у классов орторомбической системы. Предположим, что геометрические и механические характеристики тела таковы, что для описания процесса деформирования применим вариант геометрически нелинейной теории тонких оболочек в квадратичном приближении. Также предполагаем, что относительно напряженности электрического поля  и напряженности магнитного поля  выполняются электромагнитные гипотезы [1]:

, , ,

                                                             (1)

Эти допущения являются некоторым электродинамическим аналогом гипотезы недеформируемых нормалей и вместе с последней составляют гипотезы магнитоупругости тонких тел. Принятие этих гипотез позволяет свести задачу о деформации трехмерного тела к задаче о деформации выбранной произвольным образом координатной поверхности.       Координатную поверхность в недеформированном состоянии отнесем к криволинейной ортогональной системе координат  и , где  длина дуги образующей (меридиана), отсчитываемая от некоторой фиксированной точки,  центральный угол в параллельном круге, отсчитываемый от выбранной плоскости. Координатные линии  и  являются линиями главных кривизн координатной поверхности. Выбирая координату  по нормали к координатной поверхности вращения, относим оболочки к координатной пространственной системе координат . Предполагаем, что на поверхности конической оболочки известен вектор магнитной индукции, а также поверхностные механические силы.

При получении разрешающей системы в нормальной форме Коши выберем в качестве основных функций  Выбрав именно эти функции, в дальнейшем можно выбирать различные комбинации закрепления конуса. Дифференциальная система уравнений в основных функциях, описывающая напряженно-деформированное состояние токонесущих оболочек в магнитном поле при учете геометрической нелинейности и ортотропной электропроводностью, разрешается относительно первой производной искомых функций по одной из координат. Предполагаем, что все компоненты возбужденного электромагнитного поля и поля перемещений входящие в уравнения задачи магнитоупругости не зависит от координаты , а также считаем, что упругие и электромагнитомеханические характеристики материала оболочки не изменяются вдоль параллели. После некоторых преобразований [2] получаем полную систему нелинейных дифференциальных уравнений магнитоупругости в форме Коши, которая описывает напряженно-деформированное состояние токонесущей ортотропной конической оболочки при нестационарном воздействии механического и магнитного полей.

(2)

В соотношениях (1), (2) использованы общепринятые в теории оболочек и теории электромагнитоупругости обозначения. Кроме того, здесь введены такие обозначения: - тангенциальные составляющие индукции магнитного поля на поверхностях токонесущей конической оболочки. Решение краевых задач магнитоупругости связано с определенными трудностями. Это объясняется тем, что разрешающая система (2) является системой дифференциальных уравнений гиперболо-параболического типа восьмого порядка с переменными коэфициентами. Компоненты пондеромоторной силы Лоренца включают нелинейные члены, обусловленные учетом перемещений оболочки при ее деформировании.

Разработанный методики к численному решению новых класс связанных задач магнитоупругости теории ортотропных конических оболочек вращения обладающей ортотропной электропроводностью, основан на последовательном применении конечноразностной схемы Ньюмарка, метода квазилинеаризации и дискретной ортогонализации [2, 3, 4, 5].

Для эффективного использования предложенной методики предполагаем, что при появлении внешнего магнитного поля не возникает резких скин-эффектов по толщине оболочки и электромагнитный процесс по координате  быстро выходит на режим, близкий к установившемуся. Отметим что, применяя схему Ньюмарка, весь интервал изменения времени разобьем на отдельные малые по времени интервалы и историю деформирования проследим, последовательно решая задачи на каждом временном слое.

В качестве примера рассматриваем нелинейное поведение ортотропной токонесущей конической оболочки переменной толщины . Считаем, что оболочка из бериллия находится под воздействием механической силы , стороннего электрического тока  и внешнего магнитного поля , а также что оболочка имеет конечную ортотропную электропроводность . Сторонний электрический ток в невозмущенном состоянии равномерно распределен по оболочке, т.е. плотность стороннего тока не зависит от координат.

Исследуем поведение ортотропной оболочки переменной толщины в зависимости от изменения стороннего электрического тока, который изменяется следующим образом (5 вариантов):

 ; ; ;

 ;

Граничные условия:

  

Параметры оболочки и материала принимаем следующими:

, , , , ,

,  , , ,

 
,  ,

, , , , ,

Решение задачи определено на интервале времени , шаг интегрирования по времени выбирался равным . Максимальные значения получены при шаге по времени . Отметим, что в ррассматриваемом случае анизотропия удельного электрического сопротивления равно .

На ниже приведенных рисунках графики (1, 2, 3, 4, 5) соответствуют следующим вариантам изменения стороннего электрического тока:

1.; 2.; 3.; 4.; 5. .

На рис. 1 дано распределения максимальных значений напряжений  внутренней поверхностях оболочки в зависимости от времени при  для всех вариантов изменения стороннего электрического тока .

Из рис. 1 следует, что увеличение значения стороннего электрического тока приводит к увеличению значения напряжений оболочки и их максимальные значения возникают в окрестности точки при .

На рис. 2 приведено изменение магнитной индукции  по длине оболочки  при  для всех вариантов изменения стороннего электрического тока .

 

Рис. 1. Распределение напряжений по внутренней поверхности оболочки в зависимости от времени при  для всех вариантов изменения стороннего электрического тока .

 

Рис. 2. Изменение магнитной индукции  в зависимости от времени при  для всех вариантов изменения стороннего электрического тока .

 

Как видно из рисунков, с увеличением значений стороннего электрического тока значения напряжений оболочки и магнитной индукции увеличиваются.

Приведенные результаты дают возможность оценить влияние на оболочку внешнего электрического тока и магнитной индукции, а также их комбинированное воздействие.

Таким образом, выбирая направленность и величину плотности стороннего электрического тока, можно оптимизировать напряженное состояние оболочки.

 

Литература

 

1.                  Амбарцумян С.А., Багдасарян Г.Е., Белубекян М.В. Магнитоупругость тонких оболочек и пластин. - Москва: Наука, 1977. - 272 с.

2.                  Indiaminov R.SH., Mol`chenko L.V., Loss. I.I. The magnetoelastisity of conical shells mith ortotropic elektroconductivity in nonlinear position // Bulletin of the University of Kiev. Series: Physics & Mathematics.-2007. N.2. P.85-90.

3.                  Indiaminov R.SH., Mol`chenko L.V., Loss. I.I. Determining the Stress State of Flexible Orthotropic Shells of Revolution in Magnetic Field //International Applied Mechanics.-2008.-Vol. 44. No.8. P.882 - 891.

4.                  Indiaminov R.SH. On the absence of the tangential projection of the Lorenz force on the ax symmetrical stressed state of current-carrying conic shells // International Journal Computational Technologies 2008. - Vol.13. N.6. P. 65 - 77.

5.                  Индиаминов Р.Ш. Решение связанных динамических задач магнитоупругости токонесущих ортотропных конических оболочек // Сборник статьей Одиннадцатой междунар. научно-практ. конф. «Фундаментальные и прикладные исследования, разработка и применение высоких технологий в промышленности». 27-29 апреля 2011 г., г. Санкт-Петербург, Россия. Т. 3. - Санкт-Петербург, 2011. - С: 152-158.

 

Поступила в редакцию 10.09.2012 г.

2006-2018 © Журнал научных публикаций аспирантов и докторантов.
Все материалы, размещенные на данном сайте, охраняются авторским правом. При использовании материалов сайта активная ссылка на первоисточник обязательна.